Thermal performance of flat-shaped heat pipes using nanofluids

نویسندگان

  • Maryam Shafahi
  • Vincenzo Bianco
  • Kambiz Vafai
  • Oronzio Manca
چکیده

0017-9310/$ see front matter 2009 Elsevier Ltd. A doi:10.1016/j.ijheatmasstransfer.2009.12.007 * Corresponding author. E-mail address: [email protected] (K. Vafai). Analytical models are utilized to investigate the thermal performance of rectangular and disk-shaped heat pipes using nanofluids. The liquid pressure, liquid velocity profile, temperature distribution of the heat pipe wall, temperature gradient along the heat pipe, thermal resistance and maximum heat load are obtained for the flat-shaped heat pipes utilizing a nanofluid as the working fluid. The flat-shaped heat pipe’s thermal performance using a nanofluid is substantially enhanced compared with one using a regular fluid. The nanoparticles presence within the working fluid results in a decrease in the thermal resistance and an increase in the maximum heat load capacity of the flat-shaped heat pipe. The existence of an optimum nanoparticle concentration level and wick thickness in maximizing the heat removal capability of the flat-shaped heat pipe was established. 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Investigation of Heat Transfer Enhancement in a Finned U-Shaped Heat Pipe of CPU Cooling System Using Different Fluids

This paper experimentally studies the heat absorption performance of a heat sink with vertical embedded heat pipes in the aluminum blade. The cooling system with embedded heat pipes distributes heat from the CPU to both the base plate and the heat pipes, and then transfer heat from fins to the Environment. The thermal resistance and heat transfer coefficient are evaluated for natural convection...

متن کامل

Experimental Investigation on CuO/Water Nanofluid Effect on the Heat Transfer Rate of Heat Pipe Network

In this study, a new configuration of heat pipes as Heat Pipe Network is introduced. Here, the heat pipe network is designed, constructed and then has been under the performance assessment. This heat pipe network consists of 4 vertical heat pipes connected to evaporator collector from bottom and condenser collector from top. In order to investigate the effect of nanofluids on the thermal effici...

متن کامل

Fluid Flow and Heat Transfer of Nanofluids over a Flat Plate with Conjugate Heat Transfer

The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...

متن کامل

An investigation of the thermal performance of cylindrical heat pipes using nanofluids

In this work, a two-dimensional analysis is used to study the thermal performance of a cylindrical heat pipe utilizing nanofluids. Three of the most common nanoparticles, namely Al2O3, CuO, and TiO2 are considered as the working fluid. A substantial change in the heat pipe thermal resistance, temperature distribution, and maximum capillary heat transfer of the heat pipe is observed when using a...

متن کامل

Numerical study of flow and heat transfer characteristics of CuO/H2O nanofluid within a mini tube

Nanofluids are new heat transfer fluids, which improve thermal performance while reducing the size of systems. In this study, the numerical domain as a three-dimensional copper mini tube was simulated to study the characteristics of flow and heat transfer of CuO/H2O nanofluid, flowed horizontally within it. The selected model for this study was a two-phase mixture model. The results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010